
1

Strong Password-Only Authenticated Key Exchange *

David P. Jablon
Integrity Sciences, Inc.

Westboro, MA
dpj@world.std.com

September 25, 1996

A new simple password exponential key exchange method (SPEKE) is
described. It belongs to an exclusive class of methods which provide
authentication and key establishment over an insecure channel using
only a small password, without risk of offline dictionary attack. SPEKE
and the closely-related Diffie-Hellman Encrypted Key Exchange (DH-
EKE) are examined in light of both known and new attacks, along with
sufficient preventive constraints. Although SPEKE and DH-EKE are
similar, the constraints are different. The class of strong password-only
methods is compared to other authentication schemes. Benefits,
limitations, and tradeoffs between efficiency and security are discussed.
These methods are important for several uses, including replacement of
obsolete systems, and building hybrid two-factor systems where
independent password-only and key-based methods can survive a single
event of either key theft or password compromise.

1 Introduction

It seems paradoxical that small passwords are important for strong authentication. Clearly,
cryptographically large passwords would be better, if only ordinary people could remember them.
Password verification over an insecure network has been a particularly tough problem, in light of the
ever-present threat of dictionary attack. Password problems have been around so long that many have
assumed that strong remote authentication using only a small password is impossible. In fact, it can be
done.

Since the early 1990’s, an increased focus on the problem has yielded a few novel solutions, specially
designed to resist to dictionary attack. In this paper we outline the problem, and describe a new simple
password exponential key exchange, SPEKE, which performs strong authentication, over an insecure
channel, using only a small password. That a small password can accomplish this alone goes against
common wisdom. This is not your grandmother’s network login.

We compare SPEKE to the closely-related Diffie-Hellman Encrypted Key Exchange [BM92], and review
the potential threats and countermeasures in some detail. We show that previously-known and new
attacks against both methods are thwarted when proper constraints are applied.

These methods are broadly useful for authentication in many applications: bootstrapping new system
installations, cellular phones or other keypad systems, diskless workstations, user-to-user applications,
multi-factor password + key systems, and for upgrading obsolete password systems. More generally,

* ACM Computer Communications Review, October 1996.

2

they are needed anywhere that prolonged key storage is risky or impractical, and where the
communication channel may be insecure.

Readers who are thoroughly familiar with the work on Encrypted Key Exchange and related Diffie-
Hellman (DH) authentication methods may want to jump directly to § 3.1 and § 4.3 to find new results.

The rest of § 1 defines the remote password problem, § 2 defines what we want from a solution, and § 3
describes the specific SPEKE and DH-EKE methods. Both are reviewed in light of all known classes of
attack in § 4, and § 5 contains a fully-constrained description of SPEKE. § 6 discusses some limitations
and possibilities for these methods. § 7 shows related efforts, and § 8 shows several uses for these
methods.

1.1 The remote password problem

Ordinary people seem to have a fundamental inability to remember anything larger than a small secret.
Yet most methods of remote secret-based authentication presume the secret to be large. We really want
to use an easily memorized small secret password, and not be vulnerable to dictionary attack. In this
paper, we make a clear distinction between passwords and keys: Passwords must be memorized, and are
thus small, while keys can be recorded, and can be much larger. The problem is that most methods need
keys that are too large to be easily remembered.

User-selected passwords are often confined to a very small, easily searchable space, and attempts to
increase the size of the space just makes them hard to remember. Bank-card PIN codes use only 4-digits
(about 13 bits) to remove even the temptation to write them down. A ten-digit phone number has about
30 bits, which compels many people to record them. Meanwhile, strong symmetric keys need 60 bits or
more, and nobody talks about memorizing public-keys. It is also fair to assume that a memorizable
password belongs to a brute-force searchable space. With ever-increasing computer power, there is a
growing gap between the size of the smallest safe key and the size of the largest easily remembered
password.

Unfortunately, most commonly-known remote password methods require a large password. To counter
the threat of attack, we assign the user painfully large passwords, we force frequent password changes,
and we issue guilt-instilling mandates to never write the password down. It’s almost as if there’s an
unspoken, cavalier attitude toward the “problem users”, that goes something like this: “If they can’t
remember a large-enough password, then they’ll get what they deserve.” This is wrong. A more
enlightened attitude is needed. We must protect our weak-willed, weak-minded users from themselves.

The problem is compounded by the need to memorize multiple passwords for different purposes. One
example of a small-password-space attack is the verifiable plain-text dictionary attack against Kerberos
login, described in [BM89, GLNS93]. Kerberos is by no means alone with this weakness. A general
failure of many obsolete password methods is due to presuming passwords to be large. Here's a simple
example of a bad way for Alice to verify that Bob knows a small password, S: Alice sends a random
nonce R to Bob, and Bob returns Q = h(R, S), a one-way hash of the nonce combined with the password.
This proves that he knows S. But because the space is searchable with brute force, an eavesdropper can
perform a dictionary attack by repeatedly computing h(R, Si) for each candidate password Si and
comparing the result to Q.

To summarize, we assume that any password belongs to a cryptographically-small space, which is also
brute-force searchable with a modest effort. Large passwords are arguably weaker since they can’t be
memorized.

3

So why do we bother with passwords? A pragmatic reason is that they are less expensive and more
convenient than smart-cards and other alternatives. A stronger reason is that, in a well-designed and
managed system, passwords are more resistant to theft than persistent stored keys or carry-around tokens.
More generally, passwords represent something you know, one of the “big three” categories of factors in
authentication.

2 Characteristics of strong password-only methods

We now define exactly what we mean by strong password-only remote authentication. We first list the
desired characteristics for these methods, focusing on the case of user-to-host authentication. Both
SPEKE and DH-EKE have these distinguishing characteristics.

1. Prevent off-line dictionary attack on small passwords.
2. Survive on-line dictionary attack.
3. Provide mutual authentication.
4. Integrated key exchange.
5. User needs no persistent recorded (5a) secret data, or (5b) sensitive host-specific data.

Since we assume that all passwords are vulnerable to dictionary attack, given the opportunity, we need to
remove the opportunities. On-line dictionary attacks can be easily detected, and thwarted, by counting
access failures. But off-line dictionary attack presents a more complex threat. These attacks can be
made by someone posing as a legitimate party to gather information, or by one who monitors the
*messages between two parties during a legitimate valid exchange. Even tiny amounts of information
“leaked” during an exchange can be exploited. The method must be immune to such off-line attack, even
for tiny passwords. This is where SPEKE and DH-EKE excel.

Mutual authentication is desirable. These methods must prove to each of two parties that the other
knows the password.

At the same time, we generate a session key for securing a subsequent authenticated session between the
parties using the password. The desirability for integrated key exchange in authentication is discussed in
[vOW96]. The basic idea is that separating the steps of authentication and key exchange creates
opportunities for an attacker in the middle. Strong key exchange requires the participation of both
parties, and should be an integral part of the process.

The characteristic of no persistent recorded data means the user needs no additional symmetric, public,
or private keys. There are many ways to create a secure channel over which a clear-text password or a
simple hashed-password exchange can be sent. Our goal, however, is more ambitious: We seek a
password-only method, to make the password an independent factor, and simplify the user’s side of the
system. Persistent data would have to be generated, distributed, and securely stored, which poses
additional problems. Secret data must never be revealed, and non-secret sensitive data must be kept
tamper-proof. Either may require specially protected memory, and it weakens the security model by
adding another point of failure. Systems where the security of a password depends on a stored key are
easily constructed, but they just move the basis of security from the password to the key. If the key is
stolen, the password can be compromised. Eliminating persistent user-keys removes this problem, and
removes the need for secure storage, enabling some special applications, as discussed in § 8.

4

Both SPEKE and DH-EKE meet all of these goals, and have other desirable characteristics which are
discussed in the subsequent analysis. In § 7 we briefly describe some other attempts to find a strong
password-only method.

3 Two strong password-only methods

The two methods of strong password-only authentication described here are both based on a Diffie-
Hellman key exchange [DH79]. A classic DH exchange permits two parties with no prior agreement to
establish a shared secret session key. For reference, the classic DH exchange is shown in Appendix A.
DH by itself does not provide authentication, and is vulnerable to a man-in-the-middle attack.

The SPEKE and DH-EKE methods are both forms of authenticated key exchange. The use of DH
protects the password from off-line dictionary attack, while the use of the password in each method
prevents the standard DH man-in-the-middle attack, as discussed in § 4.3. From another viewpoint,
[BM92] describes how the exchange amplifies the power of the shared secret password to establish a
much larger session key. Two parties, who share only a small password (S), authenticate each other over
an insecure network, proving to each other their knowledge of S and generating a new large session key
(K).

These methods use arithmetic in a huge finite group. Several such groups can be used in DH, but for
simplicity we’ll limit discussion to Zp

* , where p is a huge prime. Appendix A also contains a brief
review of relevant group theory terminology and concepts for reference. In order to fully appreciate the
methods and the potential threats against them, some knowledge of the underlying mathematics is
helpful.

In our discussion, we presume that Alice and Bob are two well-behaved legitimate parties. In user-to-host
situations, Alice is the user. We also use the following symbols:

S a small shared password for Alice and Bob.
p a huge prime number suitable for Diffie-Hellman.
q a large prime factor of p-1.
g a suitable DH base, either primitive, or of large prime order.
Gx a subgroup of Zp

* of order x. x is a factor of p-1.
f(S) a function that converts S into a suitable DH base.
RA, RB random numbers chosen by Alice, and Bob.
QA, QB exponential values sent by Alice, and Bob.
Ek(m) a symmetric encryption function of m using key k.
h(m) a strong one-way hash function of m.
A→B: m Alice sends m to Bob.
K generated session key.

3.1 SPEKE

The simple password exponential key exchange (SPEKE) has two stages. The first stage uses a DH
exchange to establish a shared key K, but instead of the commonly used fixed primitive base g, a function
f converts the password S into a base for exponentiation. The rest of the first stage is pure Diffie-
Hellman, where Alice and Bob start out by choosing two random number RA and RB:

5

S1. Alice computes: QA = f(S)RA mod p, A→B: QA.

S2. Bob computes: QB = f(S)RB mod p, B→A: QB.

S3. Alice computes: K = h(QB
RA mod p)

S4. Bob computes: K = h(QA
RB mod p)

In the second stage of SPEKE, both Alice and Bob confirm each other’s knowledge of K before
proceeding to use it as a session key. One way is:

S5. Alice chooses random CA, A→B: EK(CA).

S6. Bob chooses random CB, B→A: EK(CB, CA).

S7. Alice verifies that CA is correct, A→B: EK(CB).

S8. Bob verifies that CB is correct.

To prevent discrete log computations, which can result in the attacks described in § 4.1, the value of p-1
must have a large prime factor q.

The function f is chosen in SPEKE to create a base of large prime order. This is different than the
commonly used primitive base for DH, and its practical importance will be discussed in § 4.2.2. The use
of a prime-order group may also be of theoretical importance.

Other variations of the verification stage are possible. This stage is identical to that of the verification
stage of DH-EKE [BM92], and variations such as those described in [STW95] using QB instead of the
random numbers Cx in an minimal three-message refinement apply to SPEKE as well as to DH-EKE.
More generally, verification of K can use any classical method, since K is cryptographically large. This
example repeatedly uses a one-way hash function:

S5. Alice sends proof of K: A→B: h(h(K))

S6. Bob verifies h(h(K)) is correct, B→A: h(K)

S7. Alice verifies h(K)) is correct.

This approach uses K in place of explicit random nonces, which is possible since K was built with
random information from both sides.

3.2 DH-EKE

DH-EKE (Diffie-Hellman Encrypted Key Exchange) is the simplest of a number of methods described in
[BM92]. The method can also be divided into two stages. The first stage uses a DH exchange to
establish a shared key K, where one or both parties encrypts the exponential using the password S. With
knowledge of S, they can each decrypt the other’s message using ES

-1 and compute the same key K.

D1. Alice computes: QA = gRA mod p, A→B: ES(QA).

D2. Bob computes: QB = gRB mod p, B→A: ES(QB).

D3. Alice computes: K = h(QB
RA mod p)

D4. Bob computes: K = h(QA
RB mod p)

6

It is widely suggested in the literature [BM92, STW95, Sch96 pp. 518-522] that at least one of the
encryption steps can be omitted, but this may leave the method open to various types of attacks as
described in § 4.3 and § 4.4.

The values of p and g, and the symmetric encryption function ES must be chosen carefully to preserve the
security of DH-EKE, as is discussed in detail in § 4.

In the second stage of DH-EKE, both Alice and Bob confirm each other’s knowledge of K before
proceeding to use it as a session key. However, with DH-EKE the order of the verification messages can
also be significant, as is discussed in § 4.4.

4 Analysis of SPEKE and DH-EKE

In the original paper on EKE [BM92], there is some analysis of DH-EKE. Further work and refinement
of EKE is presented in [STW95]. [Jas96] provides further details on a required constraint in the proper
selection of the modulus p. [vOW96] describes a refinement in computing discrete-logs, and discusses
the selection of the parameters for general DH-based authentication, especially with regard to using short
exponents. Results from these papers that are relevant to SPEKE are summarized here, along with new
observations about DH-EKE. A quick summary of the threats and relevant constraints for both methods
is presented in Table 4.

Constraint Prevents Attack by: Reference Applies to
modulus p is huge discrete log attack [BM92], § 4.1 D S †
test Qx != 0, when un-encrypted forcing K=0 [BM92] D S
p-1 has large prime factor q Pohlig-Hellman log computation [BM92] D S
encrypted Qx randomly padded. leakage from ES(Qx) [BM92] D
base is primitive root of p partition attack on ES(Qx) [BM92], § 4.2.1 D
base is a generator of q partition attack on Qx § 4.2.2 S
base = Sx mod p single discrete log computation § 4.12 S
first receiver of verification of K
must encrypt Qx

finding password S using chosen Rx,
Qx, EK(x) and password dictionary

[STW95], § 4.4 D

use one-way hash of K narrowing attacks [STW95] D S
high bits of p must be 1 partition attack on EK(Qx) [Jas96] D
Receiver of clear Qx abort if K is
small order. or Encrypt QA, QB.

subgroup confinement of K § 4.3 D

Abort if K has small order subgroup confinement of K § 4.3 S
† D: required for DH-EKE

S: required for SPEKE
Table 4 Constraints for SPEKE and DH-EKE

In a Diffie-Hellman exchange, the use of a safe prime modulus p (where p = 2q + 1, with prime q) and a
base g which is a primitive root of p is commonly recommended to prevent discrete log attacks. These
are sufficient, but more-than-necessary constraints. The literature [PH78, McC90] discusses proper
selection of g and p, in particular to address the concern that easier solutions to the discrete logarithm
problem make it easier to attack DH. Values for g in DH that are generators of a huge subgroup in Zp

*

are generally at least as strong as primitive roots. However, widely available literature, with the recent
exception of [vOW96], does not discuss how the structure of Zp

* is particularly relevant to authentication
systems that use DH. We address this issue in our discussion.

7

We discuss three classes of attack directly related to the arithmetic used in the DH exchange in the
following sections:

§ 4.1 Discrete log computation.
§ 4.2 Leaking information.
§ 4.3 Small subgroup confinement.

The discrete log computation inverts an exponentiation modulo p, to reveal the exponent, and ultimately
the password. The difficulty of this computation depends on the size and character of p. The security of
these methods relies on the computation being practically impossible.

We are also concerned that the exchanged, possibly encrypted, exponentials do not leak information
about the password S. Leaking even a single bit of information about S during a single run can be
devastating, if the bit is used to partition a password dictionary into possible and impossible candidates.
[BM92] This type of slow-leak partition attack can reduce a good-sized dictionary to a single password
candidate in a small number of runs.

Third, an attacker who knows the structure of Gp-1 may be able to force the value of K to be confined to
a small subgroup, which allows a (previously overlooked) guessing or brute force attack on K. In their
security analysis of DH-EKE, [STW95] apparently assume that K is always randomly distributed in Gp-1.
This assumption is false, since the first exponentiation of g with a random number confines the result to a
smaller subgroup at least half the time. We discuss such subgroup confinement attacks in § 4.3.

All of these attacks are stopped with the proper constraints. § 4.5 and § 4.6 discuss tradeoffs that can be
made with speed vs. security, by using a shorter modulus. More research is needed to increase the
efficiency of these methods in light of basic attacks. § 4.7 discusses how short exponents can safely
increase speed.

In addition to Alice and Bob, we introduce some other characters who make things interesting:

Mallory, who sits “in the middle” and intercepts, modifies, and re-sends messages,
Eve, who listens-in on the channel and reads all exchanged messages, and
Abby and Barry, who don’t know the password, but who try to pose as Alice and Bob.

4.1 Discrete log attack

As the security of these schemes rests primarily on exponentiation being a one-way function, there is a
general threat of an attacker computing the discrete logarithms on the exponentials. Known methods of
discrete log require a massive pre-computation for each specific modulus.

Modulus size is a primary concern. No method is currently known that could ever compute the discrete
log for a safe modulus greater than a couple thousand bits, however a concerted attack on a 512 bit
modulus may be soon feasible with considerable expense. Somewhere in between is an ideal size
balancing speed against the need for security, in a given application.

Furthermore, a carefully chosen prime modulus p is required to prevent easy shortcut solutions to the
discrete log problem. When p-1 has a large prime factor q, it resists the Pohlig-Hellman discrete log
attack described in [PH78]. A safe prime of the form p = 2q+1, is one accepted way to prevent such
short-cuts. A recent analysis and survey of these issues can be found in [vOW96].

8

It is noted in [BM92] that if we assume that a discrete log pre-computation has been made for the
modulus, a password attack must also compute the specific log for each entry in the password dictionary
(until a match is found). A similar attack in SPEKE may be more efficient, depending on the function
f(S). (see § 4.12) It is also noted in [BM92] that for any session established with a modulus vulnerable
to log attack, perfect forward secrecy is no longer guaranteed (§ 4.9), providing another reason for
keeping the discrete log computation out of reach. The feasibility of a pre-computed log table remains a
primary concern, and the efficiency of the second phase of the attack is secondary.

4.2 Leaking information

If one is not careful, the exchanged messages Qx may reveal discernible structure, and can “leak”
information about S, enabling a partition attack. This section shows how to prevent these attacks.

4.2.1 DH-EKE partition attack

In DH-EKE, Alice and Bob use a Diffie-Hellman exponential key exchange in the field Zp
* , with a huge

prime p, where p-1 has a huge prime factor q. [BM92] use the traditional preference for g as a primitive
root of p. In fact, g must be primitive to prevent a partition attack by an observer [Bel96]. A third party
can do trial decryptions of ES(gRX mod p) using a dictionary of Si. If g is not primitive, a bad guess Si is
confirmed by a primitive result. In general, the encrypted exponentials Qx must contain no predictable
structure to prevent this attack against DH-EKE. Constraining g to be primitive insures a random
distribution across Gp-1.

• g must be primitive

The properties of the encryption method itself may also be a concern, although the primary concern is
that the clear-text be random, which simplifies the constraints on the function ES. Toward this goal,
other recommended constraints for DH-EKE are:

• p must be slightly less than a power of 2. ([Jas96] describes how much less.)
• padding bits to fill to the block-size of ES must be random.

SPEKE does not require these constraints, since it does not use symmetric encryption.

4.2.2 SPEKE partition attack

Using a primitive base is not needed in SPEKE, and may be quite dangerous. If the base f(S) is an
arbitrary member of Gp-1, since the exponentials are not encrypted, an observer can test the result for
membership in smaller subgroups. When the result is a primitive root of p, he knows that the base also is
primitive. For a safe prime p, this case reveals 1 bit of information about S. When p varies, as has been
recommended when using a reduced modulus size (§ 4.6, 4.7), new information from runs with different
p allow a partition attack to reduce a dictionary of possible Si.

When, for any S, the base is a generator of a particular large prime subgroup, then no information is
leaked through the result f(S)Rx mod p. One such suitable function is f(S) = gS mod p, where g generates
a large prime subgroup. Another choice is discussed in § 4.12. We assume the use of a prime-order base
in SPEKE for the rest of the discussion. As suggested in [vOW96], a large safe prime p can be chosen so
that g = 2 is of huge prime order q.

9

Because SPEKE does not encrypt the exponentials, a formal analysis of security may be simpler to
achieve for SPEKE than for DH-EKE. The prime-order subgroup is the same as that used in the DSA
and Schnorr digital signature methods.

4.3 Subgroup confinement

In a subgroup confinement attack on a Diffie-Hellman exchange, the goal is to confine K to a predictable
and small set of values, by causing one or both parties to use a number of a small order t as the base of
exponentiation. Use of a safe-prime p = 2q+1 reduces, but does not eliminate the presence of small
subgroups, as shown in figure 4.3. Even with a safe-prime p, Zp

* still has the small subgroup G2. We’ll
show two versions of the attack.

primitive roots

Gp-1

G2

Gq

G1
1p-1

generators of Gq

Figure 4.3 Subgroups of Zp
* for a safe prime p = 2q+1

In the man-in-the-middle version of this attack described in [vOW96], both parties are unaware that
Mallory has intercepted and modified the exponentials. Knowing that t is a small prime factor of p-1,
Mallory intercepts both QA and QB and sends QA

(p-1)/t to Bob and QB
(p-1)/t to Alice. This converts the

exponentials into generators of the small subgroup Gt. 1 Both Alice and Bob go on to compute a shared
value for K, which is confined to Gt. Mallory then has the easy job of finding K with a brute force
attack. [vOW96] recommends the use of a large prime order subgroup to thwart this attack, making
confinement to the only small subgroup G1 trivial to detect. An alternate safeguard when the
factorization of p-1 is known is to test K for membership in all small subgroups, and abort if it is
confined.

We show that a confinement attack also occurs when Barry masquerades as Bob, and sends a value QB of
small order t directly to the other. This is feasible in SPEKE, or in DH-EKE when QB is unencrypted.
This one-side attack also results in K being confined to Gt, which gives Barry a 1/t chance of guessing K.

1 Let y = x(p-1)/t for an arbitrary x. Since yt = (x(p-1)/t)t ≡ 1 mod p, it can be seen that the order of y is a factor of t.
Since t is prime, y is either of order t or of order 1

10

He may get lucky with a tiny t. The middle attack is only a threat for SPEKE, since it requires that both
QA and QB be sent unencrypted.
One path to a solution is to try to eliminate small subgroups in Zp

* . The closest we can come to this is to
select p as a safe prime, which yields the small subgroups G2 and G1. An easy solution for SPEKE is to
test the value of K. In this case, insuring that K ∉ G2 prevents the attack. Each side tests K and only
proceeds if 1 < K < p-1, since G2 = {1, p-1}. For DH-EKE, another solution is to always encrypt both
exponentials so that an attacker on either side cannot (feasibly) cause Qx to be of small order.

Another approach to avoiding confinement in SPEKE is to test K for membership in all subgroups other
than Gq, where q is a large prime, and f(S) is of order q. If K is found to be a member of any group other
than Gq, then the protocol must be aborted. This is conveniently done if each receiving party raises Qx to
the power (p-1)/q before computing K. This forces K to be a member of Gq, so that testing to insure K ≠
1 prevents any confinement. 2 If Qx ∈ Gq, then this extra exponentiation is just a one-to-one mapping
that shuffles K to somewhere else in the group. The extra exponentiation adds negligible cost, since it
can be performed as multiplication in the exponent.

4.4 Omitting encryption in DH-EKE

[STW95] shows that when the party who first receives verification of K from the other omits the step of
encrypting the exponential, then DH-EKE is open to a dictionary attack on the password. [BM92]
describes this attack as it applies to other public-key variants of EKE. In this description, presume that
an attacker Abby is posing as Alice, and that the step of encrypting QA is omitted.

D1. Abby computes: QA = gRA mod p, A→B: QA

D2. Bob computes: QB = gRB mod p, B→A: ES(QB)

D3. Abby yawns.

D4. Bob computes: K = h(QA
RB mod p)

D5. Alice computes: Abby chooses a random V,A→B: V

D6. Bob computes: Bob chooses a random CB, B→A: EK(CB, EK
-1(V)))

D7. Abby leaves the building.

In this case, Abby has temporarily displaced Alice, and it may appear to Bob as an ordinary
communication failure. At this point Abby performs the off-line attack:

For each Si,
Decrypt ES(QB) with candidate password Si to obtain candidate QB'.

Compute K' = QB' RA.

Decrypt V with K' to get CA'.

Decrypt EK(CB, EK
-1(V))) with K' to get (XB, XA).

If X A equals CA',
Abby knows that Si = S.

2 From footnonte 1 in § 4.3, we know Qx

(p-1)/t is of order q. Consider any Gt and Gq, q is prime, and t < q. We
can see that the intersection Gt ∩ Gq = G1. Since K ∈ Gq, if K is also confined to Gt, then K ∈ G1, or K = 1.

11

The problem is due to the fact that the protocol makes Bob show his knowledge of K before Abby shows
hers. This attack will not succeed if the order of verification is changed so that the first to receive proof
is not the same party as the sender of the unencrypted exponential.

Encryption is a delicate issue in DH-EKE. Omitting one of the encryptions in DH-EKE raises the
possibility of either this protocol attack, or the one-sided small subgroup confinement attack described in
§ 4.3. On the other hand, the presence of encryption poses the threat of the partition attack that must be
dealt with carefully as described in § 4.2.1.

The protocol attack described here is not possible in SPEKE. In SPEKE rather than encrypting Qx with
the password, the password is hidden on each side by raising it to a random exponent. In order to
compute K given QA and QB, one must either derive the value of RB from QB or derive RA from QA.
This requires a discrete log computation.

4.5 Using a short modulus

To increase the speed of exponentiation, the modulus size can be reduced. But since the huge size of the
modulus is a cornerstone of DH security, we must be extremely careful here. If the modulus size is
reduced well below, say, 600 bits, the threat of discrete log attack becomes significant. [BM92] argues
both for and against a decreased modulus. We summarize the debate here.

Pro: A decreased modulus size makes the method faster.

Con: A decreased modulus size permits feasible (though expensive) discrete log attack.

Con: Also, for a session established with a modulus vulnerable to log attack, perfect forward secrecy
is no longer guaranteed (see § 4.9).

Pro: The log attack can be mitigated by a user-specific or frequently-changing modulus. This is a
disincentive for a third-party attacker to spend much time or money computing a discrete log for
a particular number.

In order to synchronize a variable modulus for both parties, it has been suggested that one party choose
the parameters for the other [BM92, Jas96]. This raises new issues of trust. We must now ask whether
an attacking party could maliciously choose parameters so as to gain information about the password
from the other, or to make it easier to obtain a key without using the proper password.

4.6 Uncertified ephemeral parameters

We continue the debate, which is now in terms of whether or not one party should choose the ephemeral
DH parameters. Presume that Bob chooses p and g randomly from a pre-computed set, and sends them to
Alice prior to the exchange. As we maintain our goal of not requiring persistent public keys, these
parameters must be uncertified. So, how can Alice trust them?

Con: Barry masquerading as Bob can deliberately send Alice a non-prime or non-safe prime modulus
and/or a base with properties that aid in a partition attack against Alice’s password (as described
in § 4.2).

Pro: Alice can use primality and other tests to insure that the parameters are safe. [BM92]

12

Con: Practical tests for primality are probabilistic, and are only guaranteed to work for small or
randomly chosen huge primes. An attacker might be able to deliberately create a non-prime that
can pass Alice’s test, and lead to an attack. (Also, [BM92] refers to a communication with
Odlyzko about a potential “trap door” modulus, without further explanation.)

A simple way to avoid the debate is to embed fixed safe parameters in the system, where the modulus is
large enough to “permanently” preclude the discrete log attack. It has been suggested that 1000 or 2000
bits is adequate for long-term security. The use of a short exponent as is discussed next may make this
practical for many situations.

Constraint Reason Reference Applies to
Test that p is prime non-prime p with calculated log [BM92] D S
Test that q is a large prime non-safe prime p with calculated log [BM92] D S
Certified parameters p has hidden trap door (?) [BM92] D S
Certified parameters chosen false-prime p or q § 4.6 D S

Table 4.6 Special constraints for chosen parameters

If we continue the debate in search of a safe way to use a smaller modulus, the analysis becomes more
complex. To end our discussion on a positive note, we ask whether there may be some perfect test that
Alice can efficiently perform to guarantee that the parameters are trusted to not leak information in the
first stage, at least until Bob proves who he is. Toward this goal we note that SPEKE can operate in a
large prime subgroup of order q << p, and that perfect primality tests for non-huge q are possible.

It may also be interesting to consider the case where p and q are also kept secret, possibly within a
tamper-proof hand-held device. Though this violates our characteristic 5, it might be useful if the
modulus size must be imprudently small. Considering a normal SPEKE exchange with p, q, and S kept
secret may also be of interest.

4.6.1 A user-to-station protocol

If despite the warnings in the preceding section, we still desire to let Bob choose the DH parameters for
Alice, we may want to omit our desired characteristic 5b of § 2. Bob can sign the parameters with his
private key, and require all users to have a certified copy of his public key to verify the signature. Note
that this may impose less of a key management problem than the dual-signature approach used in the
Station-to-Station protocol [DvOW92, § 7]. If Bob is a relatively secure site compared to Alice, his key
may change only rarely. Further, if parameter generation is performed by a trusted authority at a secure
central site, we might embed a public key of the trusted authority in read-only memory within all parties’
systems. The trusted authority would periodically send out lists of certified safe parameters.

4.7 Using a short exponent

A less radical approach to increasing speed is to decrease the exponent size to be merely large, leaving
the modulus huge. [vOW96] discusses this in detail. The number of bits in the exponents must be at
least double the number of bits (t) that are required for K, but this is typically much less than the number
of bits in p.
Their conclusions suggest two safe approaches, where the exponents can be reduced to size 2t bits:

13

1. Use a huge safe prime modulus p with a primitive base of 2, or better yet, a prime-order base of 2.
2. Use a huge prime modulus p with a base of large prime order q, where q has at least 2t bits.

The first approach works with either DH-EKE or SPEKE, although DH-EKE needs further protection
from the small-subgroup confinement attack. Using a base g = 2 further increases the speed. When g =
2, note that the two methods cannot use the same safe primes. A safe prime p suitable for DH-EKE must
have 2 be a primitive root of p (see § 4.2.1), while a safe prime p suitable for SPEKE should ideally have
2 be of order q.

The use of a large prime subgroup where q << p has the advantage of speeding up the generation of the
DH parameters. This works with SPEKE, but it cannot be used with DH-EKE which requires a primitive
base.

4.8 More desirable characteristics

In [DvOW92] the security of general authenticated key exchanges is discussed, and several desirable
protocol characteristics are described. We start numbering these at 6 to add to the five characteristics
listed in § 2.

6. Perfect forward secrecy
7. Direct authentication
8. No timestamps
9. Hidden identity.

Perfect forward secrecy means that disclosure of the password doesn’t reveal prior recorded
conversations. Direct authentication means that both sides verify the session key before proceeding. No
timestamps means that the messages do not contain time-dependent data, which might require time
synchronization between the parties. Without further discussion, we note that both DH-EKE and SPEKE
meet the first three objectives.

Only the ninth characteristic, hidden identity is problematic. Neither of the methods described here hides
the identity of the user from a passive observer. This limitation could be overcome with an additional
prior standard DH exchange that establishes an unauthenticated key, to encrypt the user’s identity. A
man-in-the-middle attack would reveal this hidden identity, perhaps at the expense of being detected. We
also note that while the somewhat-related Station-to-Station protocol (§ 7) can hide identity from passive
attack, it also reveals identity to a man-in-the-middle at the expense of disrupting the run.

The problem of authenticating with a perfectly-hidden identity seems to be intractable without using a
previously established secure session or large public keys. In these methods, the problem is related to the
fact that the secret is shared. In order to choose the appropriate secret for a particular party, one needs to
know the identity of the party prior to the exchange. However, prior to the exchange we assume that no
secure channel exists over which to send the identity. We forgo any further analysis of this chicken-and-
egg problem.

These characteristics have been covered in the referenced literature, with respect to key exchanges in
general. At least one more desirable characteristic of these password methods is revealed as we consider
the next attack.

4.9 Stolen session key attack

14

In an analysis of several flavors of EKE, [STW95] describes a variation of what they refer to as the
Denning-Sacco Attack, where a stolen session key K is used to mount a dictionary attack on the
password. The attack on the public-key flavor of EKE is also noted in [GLNS93]. [STW95] correctly
points out that DH-EKE resists this attack (as does SPEKE). Resistance to this attack is closely related
to perfect forward secrecy, which also isolates one kind of sensitive data from threats to another.

We note that, in DH-EKE, a stolen value of RA in addition to K permits a dictionary attack against the
password S. For each trial password Si, the attacker computes:

K' = (ESi
-1(ES(gRB)))RA

When K' equals K, he knows that Si equals S. SPEKE is also vulnerable to an attack using RA to find S.
These concerns highlight the need to promptly destroy ephemeral sensitive data, such as RA and RB.

[STW95] also notes a threat when the long-term session key K is used in an extra stage of authentication
of the extended A-EKE method [BM94, and § 7], a dictionary attack is possible using the extra messages.
To counter this threat, one can use K for the extra stage, set K' = h(K) using a strong one-way function,
and promptly discard K.

4.10 Verification stage attacks

The verification stage of either DH-EKE or SPEKE is where both parties prove to each other knowledge
of the shared key K. Because K is cryptographically large, the second stage is presumed to be immune to
brute-force attack, and thus verifying K can be done by traditional means. However, the order of
verification may be important to resist the protocol attack against DH-EKE as was discussed in § 4.4.

4.11 Detecting on-line attack

The threat of repetitive on-line guessing by a masquerading user can be mitigated by a careful logging
and accounting of invalid access attempts. The idea is to limit the number of illegal access attempts
against any single password, and require that the password be changed before the threshold is exceeded.
The threshold should be based on the known (or suspected) size of the password space. It is also
advantageous to keep separate per-password and total system counts of invalid attempts to detect both
attacks on a single account, and broad-scale attacks that do not exceed any single user’s threshold.

It may be tempting to try to distinguish between accidental mistakes and illegal attempts, by noting that
most mistakes are followed immediately by a valid access. However, a clever attacker may be able to
anticipate or delay a legitimate run, and perform a few quick guesses against the same account before
letting the legitimate run succeed. Thus, even apparently accidental mistakes should be counted, by both
parties, and viewed with suspicion.

The case of a masquerading host is a little different. Whereas the host usually has long-term storage for
logging errors, the user’s system may not. It is generally foolish to rely completely on the user himself to
enforce security policy dealing with suspicious bad attempts. The user’s system should at least keep a
short-term count of bad attempts and (securely) update the host with this count the next time access is
granted. The host may also alert the user of bad access attempts at this time. These methods greatly
deter guessing attacks against both the user and the host.

4.12 Strengthening SPEKE against discrete log attack

15

In § 4.1 we mentioned that SPEKE can be subject to a more efficient discrete log attack than DH-EKE.
We now describe this attack and show a way to prevent the problem. To prevent a partition attack, we
want our function f(S) to always produce an base of large prime order q, where q (p-1). We show two
candidate functions f(S) that are both efficient for use with SPEKE. If we assume that the discrete log
precomputation is feasible, the first function allows a more efficient attack than the second.

4.12.1 f(S) = gq
S mod p

An obvious choice is to use f(S) = gq
S mod p, where gq is an element of order q. Note that one might

consider protecting against the chance that f(S) = 1, but recalling that in Gq, 1 is the only element of the
only small subgroup G1, this chance is 1/q, insignificantly small for huge q. We show the relevant
SPEKE calculations:

QA = gq
(S · RA) mod p

QB = gq
(S · RB) mod p

K = gq
(S · RB · RA) mod p

Assume that an attacker Eve knows QA, QB, p and q. With a single discrete log computation she can
iterate through a dictionary of Si, compute candidates for RA, and test candidates for K as follows:

L = log base gq modulo p of QA = (Si · RA') mod (p-1)
For each candidate Si,

RA' = L · (Si
-1 mod (p-1))

K' = QB
RA' mod p.

Test K' against verification messages for K.

In contrast, DH-EKE resists a similar attack, apparently requiring a specific log computation for each
possible Si. [BM92] Because DH-EKE sends QA encrypted with the password, the value is not
immediately available for performing the log computation. The attacker must decrypt the candidates for
QA using each possible password, and iteratively compute the log for each candidate.

4.12.2 f(S) = S(p-1)/q mod p

In SPEKE, a preferred choice for f, makes it similarly resistant to the single discrete log attack. Using
f(S) = S(p-1)/q mod p may also be used to provide a base of order q. 3 The computation is now:

QA = S(((p-1)/q) · RA) mod p

QB = S(((p-1)/q) · RB) mod p

K = S(((p-1)/q) · RB · RA) mod p

With this alternative, the straightforward search for K requires a log computation for each candidate
password:

For each Si,
L = logSi

(QA) = (((p-1)/q) · RA) mod (p-1)

RA' = L · (((p-1)/q)-1 mod (p-1))

3 We assume the probability that g = 1 is negligibly small. This special case is also easy to detect and avoid.

16

K' = QB
RA' mod p.

Test K' against verification messages for K.

In thinking about the case of a safe prime p where 2 is of order q, this subtle advantage of using f(S) = S2

over f(S) = 2S is surprising.

4.13 Application to Kerberos

[Jas96] applies the DH-EKE method to Kerberos authentication between a client and the Key
Distribution Center (KDC). The goal is to simultaneously solve three long-standing limitations in the
system, related to dictionary attacks, dependence on timestamps, and password chaining. Password
chaining is the ability of an attacker to use an old password to determine a new one. The reference
describes how DH-EKE prevents this. The proposal uses a mild form for ordinary login, and a strong
form for specially protecting the password-change protocol. The proposed protocol (PA-ENC-DH) uses
only the first stage of DH-EKE, and omits the verification of K.

By omitting verification of K, there is no direct authentication. One result is that the KDC cannot
distinguish valid from invalid access attempts; It can only count the total number of attempts. A tradeoff
is being made between the size of the minimally secure password and the total number of allowed uses.
Such a system may be impractical for protecting very small passwords. A system that performs direct
authentication by verifying K and distinguishing valid from invalid attempts would be friendlier. With
this improvement, the frequent user who rarely mistypes his password is not penalized with frequent
demands to change the password.

5 A fully constrained SPEKE

Despite the length of the preceding analysis and discussion, a fully constrained SPEKE method is simple
in structure. The description here presumes a well-known safe prime p and random numbers RA and RB
of suitable size. Other formulations are possible.

Stage 1:
A→B: QA = S(2 · RA) mod p.

B→A: QB = S(2 · RB) mod p.

Alice: K = QB
(2 · RA) mod p.

Bob: K = QA
(2 · RB) mod p.

Each aborts if K < 2.
Stage 2:

B→A: VB = h(h(h(K))).
Alice verifies VB.
A→B: VA = h(h(K)).
Bob verifies VA.

Both then compute the shared authenticated session key K' = h(K), and both promptly destroy all copies
of K, RA, RB and, if possible, S.

Our constraints would not be complete without mention of the often controversial subject of bit-lengths.
Following the standard sizes used for the DSA [NIST94], using 512 to 1024 bits for p and 160 bits for

17

random exponents, resulting in an 80-bit K, may be sufficient for many uses. Using 1024 bits for p and
336 bits for the exponents has been recommended for DH-EKE in [Jas96] for long-term safety.

6 Other limitations and possibilities

Here are some apparent limitations of any password-only scheme, in light of dictionary attacks:

• The method must be interactive.
• The password-verifier can always perform dictionary attack.
• The password cannot be a private key in a public-key method.

Without an interactive method, the password verification messages can be used in simplistic dictionary or
replay attacks. Both parties must be active participants. We further accept that anyone in a position to
verify the password can find it with brute-force. This can be done by simulating the actions of the other
party using each candidate password. This limitation is mentioned in [BM92].

Passwords as private-keys in a public-key system would be wonderful, but the holder of the
corresponding public-key is then in a position to perform dictionary attack -- which defeats the purpose
of a public-key. Further pursuit along these lines leads into the domain of identity schemes, which are
quite complex and involve a trusted third-party. [Sch96, p. 115]

Password methods are attractive for their simplicity, convenience, and strength. Where the password can
be memorized, it need not be recorded and possibly stolen. The attraction of key-based methods is in the
richness and power of public-key and non-interactive techniques. By carefully setting expectations, both
classes of methods can be widely promoted. Strong hybrid systems can use independent key-based and
password-only methods to complement each other.

Need for a trusted path

One of the limitations of any password method is reflected in the need for a trusted path. In a classical
system this refers to the integrity of the entire system from the user’s fingers at a keyboard to the final
destination where the password is verified. In a network, password-only methods can be used to
“shorten” the trusted-path to end at the software on the user’s local processor. The path no longer
requires a prior secure network channel. However, any risks to the integrity of the local system are still
relevant.

Formal verification

Although strong password-only methods based on Diffie-Hellman have been studied for several years,
more formal analysis of the security of SPEKE and other methods would be valuable. Due to its simple
structure, SPEKE may more easily facilitate such analysis. The ability to use a prime-order subgroup
may also be significant in this regard.

18

7 Other related work

Only a few other password-only methods have been designed that successfully address the goal of
preventing off-line dictionary attacks. More complex variations of EKE using public-key encryption are
described in [BM92]. DH-EKE and SPEKE have an advantage over these in being extensible to allow
the host to store a one-way hashed form of the password, in methods such as A-EKE [BM94]. In these
extended methods, Bob uses the one-way hashed password to verify possession of the clear-text
password by Alice. When using this type of extension, we make Alice compute the hashed form, and use
S to represent the hashed password in the first stage of the exchange.

A few other approaches to strong password-only protocols have also been explored, with varying degrees
of success and complexity.

[GLNS93] describes both three-party and two-party protocols based on using secret public keys. The
authors express a concern about finding a suitable public-key method for these protocols, which require
that any random number of appropriate length be a valid public-key. The paper further describes stored-
public-key-assisted protocols, and discusses guessing attacks, Kerberos login, the important concept of
verifiable plaintext, which was originally introduced by these authors.

[Gon95] describes an optimal 3-message version of the two-party secret-public-key protocol. [STW95]
shows an optimal 3-message form of DH-EKE, which applies equally well to SPEKE. 4

Fortified Key Negotiation [Sch96 p. 522, And94] is another method which resists dictionary attack, at the
expense of reducing the effective size of the password space.

Other variations on the password-only theme are three-party exchanges, where multiple shared secrets
are held by a common trusted authentication server who mediates the process of exchange between two
parties. [STW95] points out a weakness in some instances of these.

An earlier promising approach was the Shamir and Rivest Interlock Protocol, as used by Davies and
Price, of which a brief historical account appears in [Sch96 pp. 54-55]. An attack on the Interlock
Protocol for authentication is described in [BM93], and a recent attempt to patch this hole is described in
[Ell96].

The Station-to-Station protocol described in [DvOW92] is interesting for the sake of comparison,
although it depends on the deployment of private and public keys, in violation of our desired
characteristic 5 (§ 2). The protocol uses a DH exchange and encrypts the exponentials in a manner
similar to DH-EKE, but using public-key encryption.

Still further away along the spectrum of methods are identity-based schemes, which can use zero-
knowledge ideas to prove knowledge of a secret held by another party. These do not provide an
authenticated key exchange, and they do not allow the “secret” to be cryptographically small. A brief
review of these is also included in [DvOW92].

4 Whether a minimal message protocol is truly “optimal” depends on the desired goal, and on the cost and speed of
communication vs. computation. For example, optimizing SPEKE for minimal time to completion may require more
than three messages to maximize parallel processing of both parties.

19

8 Uses of password-only authenticated exchange

With a strong password-authenticated key exchange, even small passwords can be safely used. The host
is presumed to detect and deter on-line attacks, and the protocol itself prevents off-line attacks. These
methods are ideal in some applications for several reasons: secure key storage can be problematic, large-
key input can be cumbersome, and passwords may need to be better protected. Several applications for
strong password-only exchanges are mentioned here.

In § 4.13 we discussed using DH-EKE or SPEKE to correct deficiencies in Kerberos. The same ideas
can be used to upgrade many other vulnerable network login systems, which can be essential for new
uses such as personal-computer remote banking, and general computer login over the Internet.

In systems where only a numeric keypad is available, such as cellular telephone authentication, a secure,
short numeric password is especially convenient. TV remote-controlled set-top boxes might be another
area of new applications. These environments may also preclude long-term storage of persistent keys.

Diskless workstations are another class of device where it is inconvenient to have locally stored keys.
Password-only methods are ideal for establishing an initial connection to a trusted host, and to obtain the
user’s safely stored credentials. This concept of remote storage of long-term credentials with a secure
download has been used in the SPX authentication system. [TA91]

Any device or system that uses these methods can be generic, in that it is not preprogrammed to speak
only for a particular user, or to speak to any particular host. Alternative approaches using a persistent
public-key need to embed a key which designates a specific trusted authority. This can be inconvenient.
Password-only methods make it easier to deploy a system that has no such embedded prior agreement.
This model may better fit the “commodity” market model for software and hardware devices.

The concept of bootstrapping a new secure system is broad, and is best illustrated with a common case.
You’re installing a new network workstation from a CD-ROM. Somewhere during installation you’re
prompted to enter a name and password to let you join the secure corporate network. Unless some
additional site-specific keys are manually installed on the system, a strong password-only method is
needed to allow the new station to make a secure channel to the rest of the network. Once an
authenticated channel is established, the station can automatically obtain any further credentials or keys.
Similar “bootstrapping” situations arise in almost all secure systems.

Though we’ve focused so far on user-to-host authentication, password-only methods may be important
for direct user-to-user authentication. [Ell96] describes the use of an interactive series of questions and
answers to authenticate the identity of an “old friend, out of touch” across a network. The idea is to prove
to each other that they know common facts, without revealing those facts. Such situations are actually
quite common. Password-only methods solve this general authentication paradox, which is present
even in some face-to face situations. For example, you may want to prove that your bank knows your
“secret” account numbers, and your bank wants you to prove that you know your “secret” social security
number, but neither wants to reveal the information directly to the other. This is solved by these
methods. Of course, given that much of this type of shared information is not as secret as we’d like it to
be, a series of exchanges may be needed to prove further small amounts of shared knowledge, to build
confidence in the authentication.

Multi-factor authentication may be needed when neither a stored key nor a memorized password is strong
enough. In a hybrid system, one should strive to make the password an independent factor, so that its

20

security does not depend on persistent stored keys, and vice-versa. Password-only methods can be
combined with key-based method to build systems that can tolerate either a stolen password or a stolen
key.

9 Summary

We’ve introduced a new password-only authentication protocol, SPEKE, which appears to be at least as
strong as the closely related DH-EKE method. Using only a small password, these methods provide
authentication and key establishment over an insecure channel, and are immune to offline dictionary
attack.

A review of the classes of attack against these DH-based methods includes some new observations, and
new constraints which are required to keep both methods safe. These constraints are listed as a
convenience to implementors. Concerns raised about receiving unauthenticated DH parameters argue for
the use of either a fixed huge modulus, or certified parameters, or the need for further research. In any
case, it is practical to increase speed by using shorter exponents.

Strong password-only methods have many uses, by themselves, or in multi-factor authentication systems.
It is apparent that password-only methods can achieve things that no stored-key method can achieve, and
vice-versa. A well-designed system can leverage the power of small, easily-memorized passwords,
adding significant strength to the foundation for remote security.

10 References

[And94] R. J. Anderson and T. M. A. Lomas, "Fortifying Key Negotiation Schemes with Poorly
Chosen Passwords", Electronics Letters, v. 30, n. 13, June 23, 1994, pp. 1040-1041.

[Bel96] S. M. Bellovin, private communication.

[BM92] S. M. Bellovin and M. Merritt, "Encrypted Key Exchange: Password-Based Protocols Secure
Against Dictionary Attacks", Proceedings of the I.E.E.E. Symposium on Research in Security
and Privacy, Oakland, May 1992.

[BM93] S. M. Bellovin and M. Merritt, "An Attack on the Interlock Protocol When Used for
Authentication", I.E.E.E. Transactions on Information Theory , v. 40, n. 1, January 1994, pp.
273-275.

[BM94] S. M. Bellovin and M. Merritt, "Augmented Encrypted Key Exchange: a Password-Based
Protocol Secure Against Dictionary Attacks and Password File Compromise", AT&T Bell
Laboratories (c. 1994).

[DH79] W. Diffie and M. E. Hellman, "Privacy and Authentication: An Introduction to
Cryptography," Proceedings of the I.E.E.E., vol. 67, No. 3, pp. 397-427 (Mar. 1979)

[DvOW92] W. Diffie, P.C. van Oorschot, and M. Wiener, "Authentication and Authenticated Key
Exchanges", Designs Codes and Cryptography", 2, 107-125, (1992)

21

[Ell96] C. Ellison, "Establishing Identity Without Certification Authorities", Proceedings of the
Sixth Annual USENIX Security Symposium, San Jose, July 1996, pp. 67-76.

[GLNS93] L. Gong, M. Lomas, R. Needham, & J. Saltzer, "Protecting Poorly Chosen Secrets from
Guessing Attacks", I.E.E.E. Journal on Selected Areas in Communications, Vol. 11, No. 5,
June 1993, pp. 648-656.

[Gon95] L. Gong, "Optimal Authentication Protocols Resistant to Password Guessing Attacks",
Proceedings of the 8th IEEE Computer Security Foundations Workshop, County Kerry,
Ireland, June 1995, pp. 24-29.

[Jas96] B. Jaspan, "Dual-workfactor Encrypted Key Exchange: Efficiently Preventing Password
Chaining and Dictionary Attacks", Proceedings of the Sixth Annual USENIX Security
Conference, July 1996, pp. 43-50.

[McC90] K. McCurley, "The Discrete Logarithm Problem", Cryptology and Computational Number
Theory, Proceedings of Symposia in Applied Mathematics, vol. 42, 1990, pp. 49-74.

[NIST94] National Institute of Standards and Technology, NIST FIPS PUB 186, "Digital Signature
Standard", U.S. Department of Commerce, May 1994.

[PH78] Pohlig & Hellman, "An Improved Algorithm for Computing Logarithms over GF(p) and its
Cryptographic Significance", I.E.E.E. Transactions on Information Theory, pp. 106-110,
January 1978.

[Sch96] B. Schneier, "Applied Cryptography Second Edition", John Wiley & Sons, 1996.

[STW95] M. Steiner, G. Tsudik, and M. Waidner, "Refinement and Extension of Encrypted Key
Exchange", Operating Systems Review, vol. 29, Iss. 3, pp. 22-30 (July 1995).

[TA91] J. Tardo & K. Alagappan, "SPX: Global authentication using public key certificates",
Proceedings of I.E.E.E. Computer Society Symposium on Research in Security and Privacy,
Oakland, pp. 232-244, May 1991.

[vOW96] P. C. van Oorschot, M. J. Wiener, "On Diffie-Hellman Key Agreement with Short
Exponents", Proceedings of Eurocrypt ’96, Springer-Verlag, May 1996.

* * * * *

22

Appendix A Group theory relevant to Diffie-Hellman methods

Finite groups have interesting properties that are used in Diffie-Hellman and the SPEKE and DH-EKE
methods discussed in this paper. Several finite groups can be used in DH, but for simplicity we limit
discussion to Zp

* , the group of integers from 1 to p-1, under multiplication modulo p, where p is a huge
prime. Exponentiation modulo p is a one-way function, for suitable p, due to the difficulty of computing
discrete logarithms.

Zp
* is also known as the multiplicative group of the Galois field of integers modulo p, or GF(p)* . When

showing arithmetic within these groups, it is traditional to sometimes omit “mod p”. As in any group,
for any x and y which are members of Zp

* , the product of x and y is also a member, and thus
exponentiation always remains within the group. In other words:

∀x,y: x,y ∈ Zp
* ⇒ ((x ⋅ y) mod p) ∈ Zp

* .
∀x,n: x ∈ Zp

* ⇒ (xn mod p) ∈ Zp
* .

For each x which is a divisor of p-1, the group Zp
* contains a subgroup Gx of order x, that is, Gx contains

x elements. Zp
* = Gp-1. Every group Gx contains the trivial subgroup G1, consisting of {1}, and the

subgroup Gx itself. A group Gq of prime order q has no subgroups other than Gq and G1. A generator g

of Gx is a number such that the set {g1, g2, ... , gx} includes all elements of Gx. A generator of Gp-1 is
said to be a primitive root of p. A number is said to be of order x when it is a generator of Gx. If g is of
order x, then gx ≡ 1 mod p.

Also note that arithmetic within the exponent must be done modulo p-1.

∀x,y: xy ≡ xy mod (p-1) mod p.

This is seen from Fermat’s Theorem:

Given a prime p, for every a such that gcd(a, p) = 1, ap-1 mod p = 1.

The traditional DH exchange uses two random numbers RA, and RB to negotiate a shared key K:

Alice→Bob: QA = gRA mod p

Bob→Alice: QB = gRB mod p

Alice computes: K = QB
RA mod p

Bob computes: K = QA
RB mod p

A prime where p-1 has only small factors is called smooth. Smooth primes are avoided in these methods
because they allow a much faster discrete log computation [PH78], ruining exponentiation as a useful
one-way function. It is easy to select a non-smooth prime by insuring that p-1 has a large prime factor q.
Using a safe-prime of the form p = 2q+1, where q is prime, and where the base g is a primitive root of p,
is commonly recommended in DH. However, other choices are sometimes preferable. [vOW96]
recommends using g as a base of order q to force all results within the large prime subgroup Gq.

Note that a safe prime is somewhat different from strong primes, which refers to a more complex (and
debatable) set of constraints for the prime factors of a number n = pq, in methods such as RSA.

* * * * *

